Foot-and-Mouth Disease Virus 3C Protease Induces Fragmentation of the Golgi Compartment and Blocks Intra-Golgi Transport

نویسندگان

  • Zhigang Zhou
  • Mette M. Mogensen
  • Penny P. Powell
  • Stephen Curry
  • Thomas Wileman
چکیده

Picornavirus infection can cause Golgi fragmentation and impose a block in the secretory pathway which reduces expression of major histocompatibility antigens at the plasma membrane and slows secretion of proinflammatory cytokines. In this study, we show that Golgi fragmentation and a block in secretion are induced by expression of foot-and-mouth disease virus (FMDV) 3C(pro) and that this requires the protease activity of 3C(pro). 3C(pro) caused fragmentation of early, medial, and late Golgi compartments, but the most marked effect was on early Golgi compartments, indicated by redistribution of ERGIC53 and membrin. Golgi fragments were dispersed in the cytoplasm and were able to receive a model membrane protein exported from the endoplasmic reticulum (ER). Golgi fragments were, however, unable to transfer the protein to the plasma membrane, indicating a block in intra-Golgi transport. Golgi fragmentation was coincident with a loss of microtubule organization resulting from an inhibition of microtubule regrowth from the centrosome. Inhibition of microtubule regrowth also required 3C(pro) protease activity. The loss of microtubule organization induced by 3C(pro) caused Golgi fragmentation, but loss of microtubule organization does not block intra-Golgi transport. It is likely that the block of intra-Golgi transport is imposed by separate actions of 3C(pro), possibly through degradation of proteins required for intra-Golgi transport.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Poliovirus infection blocks ERGIC-to-Golgi trafficking and induces microtubule-dependent disruption of the Golgi complex.

Cells infected with poliovirus exhibit a rapid inhibition of protein secretion and disruption of the Golgi complex. Neither the precise step at which the virus inhibits protein secretion nor the fate of the Golgi complex during infection has been determined. We find that transport-vesicle exit from the endoplasmic reticulum (ER) and trafficking to the ER-Golgi intermediate compartment (ERGIC) a...

متن کامل

Foot-and-mouth disease virus-induced RNA polymerase is associated with Golgi apparatus.

Electrophoretic analysis of the Golgi apparatus isolated by differential centrifugation from radiolabeled cells infected with foot-and-mouth disease virus showed about 10 protein bands. The virus-induced RNA polymerase was identified by immunoprecipitation and electron microscope staining procedures. Pulse-chase experiments indicated that the polymerase passed through the Golgi apparatus in les...

متن کامل

A role for endoplasmic reticulum exit sites in foot-and-mouth disease virus infection

Picornaviruses replicate their genomes in association with cellular membranes. While enteroviruses are believed to utilize membranes of the early secretory pathway, the origin of the membranes used by foot-and-mouth disease virus (FMDV) for replication are unknown. Secretory-vesicle traffic through the early secretory pathway is mediated by the sequential acquisition of two distinct membrane co...

متن کامل

Foot-and-mouth disease virus replication sites form next to the nucleus and close to the Golgi apparatus, but exclude marker proteins associated with host membrane compartments.

Picornavirus infection of cells generally results in the production of membranous vesicles containing the viral proteins necessary for viral RNA synthesis. To determine whether foot-and-mouth disease virus (FMDV) infection induced similar structures, and which cellular components were involved, the subcellular distribution of FMDV proteins was compared with protein markers of cellular membrane ...

متن کامل

Effects of foot-and-mouth disease virus nonstructural proteins on the structure and function of the early secretory pathway: 2BC but not 3A blocks endoplasmic reticulum-to-Golgi transport.

Infection of cells by picornaviruses leads to the generation of intracellular membrane vesicles. The expression of poliovirus (PV) 3A protein causes swelling of the endoplasmic reticulum (ER) and inhibition of protein trafficking between the ER and the Golgi apparatus. Here, we report that the nonstructural proteins of a second picornavirus, foot-and-mouth disease virus (FMDV), also perturb the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 87  شماره 

صفحات  -

تاریخ انتشار 2013